Synthesis of Metal Colloids

Caution: Since the colloid synthesis is sensitive to various laboratory conditions and the practices of the individual researchers, the following procedure should be taken as a general guideline. One may have to vary the experimental conditions to suit their needs.

Preparation of 2.5 \times 10⁻⁴ M Gold Colloids (Sodium Citrate Reduction Method)

- 1. Make a solution of ~5.0 x 10⁻³M HAuCl₄ in water. (0.1699 g HAuCl₄ in 100 mL deionized H₂O)
- 2. Take 1 mL of that solution and add it to another 18 mL of H₂O.
- 3. Make a solution of 0.5% sodium citrate (0.25g in 50 mL of H_2O).
- 4. Heat the 19 mL solution of HAuCl₄ until it begins to boil.
- 5. Add 1 mL of 0.5% sodium citrate solution, as soon as boiling commences.
- 6. Continue heating until colour change is evident (pale purple).
- 7. Remove the solution from the heating element and continue to stir until it has cooled to room temperature.
- 8. Top the solution up to 20 mL to account for boiling.

This is an old method (refereed as Turkevich method) which yields fairly uniform size colloids with diameter of 15-20 nm. See reference Turkevich, J.; Stevenson, P. L.; Hillier, J.Discuss. Faraday Soc. 1951, 11, 55

Preparation of Gold Particles in Toluene:

A. Hydrogen tetrachloroaurate (30 mL of 30 mM, in water).

Mass = 393g/mol 2 0.03 M 2 30mL/1000mL

= 0.3537g of HAuCl₄ in 30mL of H₂O

B. Tetraoctyl ammonium bromide (80 mL in 50 mM, in toluene).

Mass = 546.8g/mol 2 0.05 M 2 80ml/1000mL

= 2.187g of TOAB in 80mL of toluene

1. Prepare 2.19 g of tetraoctyl ammonium bromide in 80 mL of toluene.

- 2. Add solution prepared in step 1. to a solution of hydrogen tetrachloroaurate (0.3537 g in 30 mL of H_2O).
- 3. Stir for 10 min.
- 4. Vigorously stir reaction mixture and add NaBH₄ (0.38 g in 25 mL of H₂O) dropwise over a period of \sim 30 min. (Ensure that organic and aqueous phases are being mixed together).
- 5. Stir solution for an additional 20 min.
- 6. Extract organic phase and wash once with diluted H₂SO₄ (for neutralization) and five times with distilled water.
- 7. Dry organic layer with Na₂SO₄.

For platinum particles substitute dihydrogen hexachloroplatinate (IV) (PtCl_{6 \square} H₂O) for HAuCl₄ and for iridium particles substitute H₂IrCl_{6 \square} 4H₂O for HAuCl₄.

Yields highly concentrated gold colloidal suspension with particle diameter in the range of 5-10 nm. Can be suspended in both polar and nonpolar solvents.

Adopted from the reference Brust, M.; Walker, M.; Bethell, D.; Schffrin, D. J. Whyman, R., *J. Chem. Soc., Chem. Commun.*, 1994, 801-802 and George Thomas, K.Kamat, P. V. *J. Am. Chem. Soc.* 2000, 122, 2655

Preparation of 1.0 x 10^{-3} M Ag Colloids (Sodium Citrate Reduction Method)

- 1. Make a solution of $\sim 5.0 \times 10^{-3} M AgNO_3$ in water. (0.0425 g in 50 mL deionized H₂O).
- 2. Take 25 mL of that solution and add it to another 100 mL of H_2O (now ~1.0 x $10^{-3}M$).
- 3. Make a solution of 1% sodium citrate (0.5 g in 50 mL of H_2O).
- 4. Heat the 125 mL solution of AgNO₃ until it begins to boil.
- 5. Add 5 mL of 1% sodium citrate solution, as soon as boiling commences.
- 6. Continue heating until a colour change is evident (pale yellow).
- 7. Remove the solution from the heating element and continue to stir until it has cooled to room temperature.
- 8. Top the solution up to 125 mL to account for boiling.

This method yields relatively large size silver nanocrystallites with a diameter of 60-80 nm and exhibits abs. max. ~420 nm. See reference:

J. Phys. Chem. B, 1998, 102, 3123

(Note: Use of Sodium Borohydride as a reductant can give smaller size silver nanoparticles with plasmon absorption around 380 nm. Presence of citric acid or polyvinyl alcohol can provide additional stability to these colloids)

Preparation of Au Capped Ag

- 1. Take 125 mL of 1.0×10^{-3} M solution of Ag colloids and add 12,5 mL H₂O.
- 2. Heat this solution until it comes to a boil and then add the appropriate amount of $5.0 \times 10-3M$ HAuCl₄. (For example: 50? L, 100? L, 150? L, 300? L, and 500? L)

Silver Nanocrystal Preparation in Organic Medium (Using TOAB)

Modification of method found in source: Korgel, B.A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. *J. Phys. Chem. B* **1998**, *102*, 8379-8388. (The method described in this paper yields a precipitate of AgBr in the initial extraction process)

- 1. Prepare ~5.0M NaNO₃ in deionized water (12.749g NaNO₃ in 30mL H₂O).
- 2. Prepare ~50mM TOAB in toluene (1.367g tetraoctylammonium bromide in 50mL toluene).
- 3. Add the TOAB/toluene solution to the NaNO₃/water solution.
- 4. Stir <u>vigorously</u> for 1 hour (to remove Br ions from solution and prevent the formation of AgBr when AgNO₃ is added).
- 5. Extract organic phase and set aside. Discard aqueous phase.
- 6. Prepare \sim 30mM AgNO₃ in water (0.0764g NaNO₃ in 14mL H₂O).
- 7. Add 7.5mL of 30mM AgNO₃ solution to the organic solution.
- 8. Stir vigorously for 45 minutes.
- 9. Extract organic phase (discard aqueous layer).
- 10. Add 0.16mg (~0.189mL) of 1-dodecanethiol to organic solution (to cap the silver)
- 11. Stir vigorously for 15 minutes.
- 12. Meanwhile, prepare ~0.4M NaBH₄ in water (0.3783g NaBH₄ in 24mL H₂O).
- 13. Add 6.25mL of the NaBH₄,dropwise over a 35min. period, to the solution containing the silver (organic layer), while stirring vigorously.
- 14. Stir for ~15 hours (overnight).
- 15. Extract organic layer (discard aqueous layer).
- 16. Wash organic layer 3 times with dilute ethanol.
- 17. Allow to settle, and extract organic layer.
- 18. Store is closed container.